All posts by Jason Franz

ABL attends ASB2017 in Boulder, CO (August 2017)

Image result for american society of biomechanicsThe Applied Biomechanics Lab and our collaborators had an excellent time attending and presenting our research at the 41st annual meeting of the American Society of Biomechanics in beautiful Boulder, CO. Congratulations to all our students and trainees!

IMG_2783

 

 

 

 

 

 

 

 

 

 

 

 

Abstracts:

Franz JR and Zelik KE, Too much work: revisiting ultrasound-based estimates of Achilles tendon energy storage and return.

Clark WH and Franz JR, Do triceps surae muscle dynamics govern non-uniform Achilles tendon displacements?

Thompson JD and Franz JR, Age and falls history effects on antagonist leg muscle coactivation during walking with optical flow perturbations.

Conway KA and Franz JR, The functional utilization of propulsive capacity during human walking.

Browne MG and Franz JR, Does dynamic stability govern propulsive force generation in human walking?

Browne MG and Franz JR, More push from your push-off: joint-level modifications to modulate propulsive forces in old age.

Qiao M, Feld JA, and Franz JR, Aging effects on leg joint variability during walking in the presence of optical flow perturbations.

Nuckols RW, Dick TJM, Franz JR, Sawicki GS, Using elastic ankle exoskeletons to counteract age-related structure-function deficits.

Allen JL, Thompson JD and Franz JR, Age and falls history effects on the modular control of walking with optical flow perturbations.

New Funding (August 2017)

Image result for national ms society

The Applied Biomechanics Laboratory, in collaboration with UNC Healthcare and researchers at the University of Illinois at Urbana-Champaign, has been awarded an exciting new Pilot Research Grant from the National Multiple Sclerosis (MS) Society. The project will leverage our virtual reality infrastructure to quantify standing and walking balance control and response to perturbations in people with MS vs. age-matched controls. Our long-term translational goal is to develop novel and more effective markers of balance and mobility impairment for the detection of disease onset and progression.

 

ABL attends ISB2017 in Brisbane, Australia! (July 2017)

Image result for international society of biomechanics 2017

Members of the Applied Biomechanics Lab traveled around the world to Brisbane, Australia for the 2017 Congress of the International Society of Biomechanics. There were koalas, kangaroos, sharks, and plenty of science and opportunities for new research collaborations. It was incredible well organized and we were so pleased to present the following two research abstracts:

Franz JR and Zelik KE. “Too much work: revisiting ultrasound-based estimates of Achilles tendon energy storage and return.”

Clark WH and Franz JR. “Do triceps surae muscle dynamics govern non-uniform Achilles tendon displacements?”

Mobile Summer Institutes on Scientific Teaching (July 2017)

SummerInstitute1

Dr. Franz joined two colleagues from BME this month in attending an HHMI/NSF sponsored program called “Mobile Summer Institutes on Scientific Teaching”. Together with Drs. Hubbard and Hu, Dr. Franz was also named a Scientific Teaching Fellow of the National Academies. The Institute provided a rigorous week-long program providing techniques and hands-on coaching and feedback on scientific teaching and student-centered learning. More information can be found here:

http://www.summerinstitutes.org/mobile-institutes

 

Paper Accepted (June 2017)

The result of an exciting new collaboration with Vanderbilt University, our most recent paper advances our fundamental understand of the accuracy, precision, drawbacks, and assumptions of our measurement techniques to interpret the functional role of muscle-tendon dynamics during movement.

Zelik KE and Franz JR. It’s positive to be negative: Achilles tendon work loops during human locomotion. PLoS One (In press).

Abstract. Ultrasound imaging is increasingly used with motion and force data to quantify tendon dynamics during human movement. Frequently, tendon dynamics are estimated indirectly from muscle fascicle kinematics (by subtracting muscle from muscle-tendon unit length), but there is mounting evidence that this Indirect approach yields implausible tendon work loops. Since tendons are passive viscoelastic structures, when they undergo a loading-unloading cycle they must exhibit a negative work loop (i.e., perform net negative work). However, prior studies using this Indirect approach report large positive work loops, often estimating that tendons return 2-5 J of elastic energy for every 1 J of energy stored. More direct ultrasound estimates of tendon kinematics have emerged that quantify tendon elongations by tracking either the muscle-tendon junction or localized tendon tissue. However, it is unclear if these yield more plausible estimates of tendon dynamics. Our objective was to compute tendon work loops and hysteresis losses using these two Direct tendon kinematics estimates during human walking. We found that Direct estimates generally resulted in negative work loops, with average tendon hysteresis losses of 2-11% at 1.25 m/s and 33-49% at 0.75 m/s (N=8), alluding to 0.51-0.98 J of tendon energy returned for every 1 J stored. We interpret this finding to suggest that Direct approaches provide more plausible estimates than the Indirect approach, and may be preferable for understanding tendon energy storage and return. However, the Direct approaches did exhibit speed-dependent trends that are not consistent with isolated, in vitro tendon hysteresis losses of about 5-10%. These trends suggest that Direct estimates also contain some level of error, albeit much smaller than Indirect estimates. Overall, this study serves to highlight the complexity and difficulty of estimating tendon dynamics non-invasively, and the care that must be taken to interpret biological function from current ultrasound-based estimates.

 

Paper Accepted (June 2017)

Orselli MI, Franz JR, Thelen DG. The effect of Achilles tendon compliance on triceps surae mechanics and energetics in walking. Journal of Biomechanics (In press).

Abstract. Achilles tendon (AT) compliance can affect the generation and transmission of triceps surae muscle forces, and thus has important biomechanical consequences for walking performance. However, the uniarticular soleus (SOL) and the biarticular (GAS) function differently during walking, with in vivo evidence suggesting that their associated fascicles and tendinous structures exhibit unique kinematics during walking. Given the strong association between muscle fiber length, velocity and force production, we conjectured that SOL and GAS mechanics and energetic behavior would respond differently to altered AT compliance. To test this, we characterized GAS and SOL muscle and tendon mechanics and energetics due to systematic changes in tendon compliance using musculoskeletal simulations of walking. Increased tendon compliance enlarged GAS and SOL tendon excursions, shortened fiber operation lengths and affected muscle excitation patterns. For both muscles, an optimal tendon compliance (tendon strains of approximately 5% with maximum isometric force) existed that minimized metabolic energy consumption. However, GAS muscle-tendon mechanics and energetics were significantly more sensitive to changes in tendon compliance than were those for SOL. In addition, GAS was not able to return stored tendon energy during push-off as effectively as SOL, particularly for larger values of tendon compliance. These fundamental differences between GAS and SOL sensitivity to altered tendon compliance seem to arise from the biarticular nature of GAS. These insights are potentially important for understanding the functional consequences of altered Achilles tendon compliance due to aging, injury, or disease.

Congratulations to Jessica Thompson (April 2017)

The Applied Biomechanics Laboratory would like to congratulate Jessica Thompson for successfully defending her Master’s thesis in the Joint Department of Biomedical Engineering. Her thesis was titled “The Kinematic and Electromyographic Response to Optical Flow Balance Perturbations in Walking: Visuomotor Adaptation and the Acute Effects of Age and Falls History”. Excellent work!

UNC Undergraduate Research Symposium

Ashish_Biol_20171.JPGCongratulations to Ashish Khanchandani on successfully presenting his research at the UNC Undegraduate Research Symposium. Ashish, in collaboration with other undergraduate and graduate students, is working on a project titled “The effects of physiological loading on dynamic variations in the Achilles tendon moment arm.” Nice work, Ashish!

ABL attends 2017 Regional ASB

The UNC/NCSU Applied Biomechanics Lab had a terrific showing at the 2017 Human Movement Science and Biomechanics Symposium this week! Congratulations to all our students and trainees!

HMSC2017_21

Abstracts Presented:

Clark WH and Franz JR, Do triceps surae muscle dynamics govern non-uniform Achilles tendon deformations? Human Movement Science and Biomechanics Symposium. Chapel Hill, NC. March 2017.

Nuckols RW, Dick TJM, Franz JR, Sawicki GS, Using elastic ankle exoskeletons to counteract age-related structure-function deficits. Human Movement Science and Biomechanics Symposium. Chapel Hill, NC. March 2017.

Qiao M, Feld JA, and Franz JR. Aging effects on leg joint variability during walking in the presence of optical flow perturbations. Human Movement Science and Biomechanics Symposium. Chapel Hill, NC. March 2017.

Browne MG and Franz JR, Does dynamic stability govern propulsive force generation in human walking? Human Movement Science and Biomechanics Symposium. Chapel Hill, NC. March 2017.

Conway KA and Franz JR, The functional utilization of propulsive capacity during human walking. Human Movement Science and Biomechanics Symposium. Chapel Hill, NC. March 2017.

Thompson JD and Franz JR, Age and falls history effects on antagonist leg muscle coactivation during walking with optical flow perturbations. Human Movement Science and Biomechanics Symposium. Chapel Hill, NC. March 2017.