Skip to main content
 

Image result for clinical biomechanicsThompson JD, Plummer P, Franz JR. Age and falls history effects on antagonist leg muscle coactivation during walking with balance perturbations. Clinical Biomechanics.

 

 

 

 

Abstract. 

Background: Inspired by a reliance on visual feedback for movement control in older age, optical flow perturbations provide a unique opportunity to study the neuromuscular mechanisms involved in walking balance control, including aging and falls history effects on the response to environmental balance challenges. Specifically, antagonist leg muscle coactivation, which increases with age during walking, is considered a neuromuscular defense against age-associated deficits in balance control. The purpose of this study was to investigate the effects of age and falls history on antagonist leg muscle coactivation during walking with and without optical flow perturbations of different amplitudes.

Methods: Eleven young adults [mean (standard deviation) age: 24.8 (4.8) years], eleven older non-fallers [75.3 (5.4) years] and eleven older fallers [age: 78 (7.6) years] participated in this study. Participants completed 2-minute walking trials while watching a speed-matched virtual hallway that, in some conditions, included mediolateral optical flow perturbations designed to elicit the visual perception of imbalance.

Findings: We first found that lower leg antagonist muscle coactivation during normal walking increased with age, independent of falls history. We also found that older but not young adults increased antagonist leg muscle coactivation in the presence of optical flow perturbations, with more pervasive effects in older adults with a history of falls.

Interpretation: Our findings allude to a greater susceptibility to optical flow perturbations in older fallers during walking, which points to a higher potential for risk of instability in more complex and dynamic everyday environments. These findings may also have broader impacts related to the design of innovative training paradigms and neuromuscular targets for falls prevention.

Comments are closed.